An example of a proof by structural induction

Define the set \mathcal{B} of *binary trees* as follows:

- 1. A tree with a single node r is in \mathcal{B} ; and
- 2. If r is a node and T_1 and T_2 are binary trees, i.e., $T_1 \in \mathcal{B}$ and $T_2 \in \mathcal{B}$, then the tree $T = (r, T_1, T_2)$ is a binary tree, i.e., T is in \mathcal{B} . You should view T as a tree with root r with r having as left child the tree T_1 and as right child the tree T_2 .

We now define two functions $|.| : \mathcal{B} \to \mathbf{N}$ and $h : \mathcal{B} \to \mathbf{N}$ which respectively return the number of nodes in a tree and the height of the tree.

- 1. Definition of $|.|: \mathcal{B} \to \mathbf{N}$:
 - (a) |r| = 1
 - (b) $|(r, T_1, T_2)| = 1 + |T_1| + |T_2|$
- 2. Definition of $h : \mathcal{B} \to \mathbf{N}$:
 - (a) h(r) = 0(b) $h((r, T_1, T_2)) = 1 + \max(h(T_1), h(T_2)).$

We will now proof that $\forall T \in \mathcal{B}: |T| \leq 2^{h(T)+1} - 1.$

Proof. The proof will be by structural induction.

- 1. Let T be the tree consisting of a single node r. This is the base case. By definition, |r| = 1. By definition h(r) = 0. So clearly, $|r| \le 2^{h(r)+1} 1$.
- 2. Now let $T = (r, T_1, T_2)$. Since T_1 and T_2 are "simpler" trees than T, we can assume by *structural induction* that

$$|T_1| \le 2^{h(T_1)+1} - 1 \qquad (a)$$

and

$$|T_2| \le 2^{h(T_2)+1} - 1$$
 (b).

Therefore,

$$\begin{aligned} |T| &= |(r, T_1, T_2)| \\ &= 1 + |T_1| + |T_2| \quad \text{(by definition of } |.|) \\ &\leq 1 + (2^{h(T_1)+1} - 1) + (2^{h(T_2)+1} - 1) \quad \text{(by (a) and (b) above)} \\ &\leq 2.2^{\max(h(T_1),h(T_2))+1} - 1 \quad \text{(by simple algebra of max function)} \\ &= 2.2^{h(T)} - 1 \quad \text{(by definition of the } h \text{ function)} \\ &= 2^{h(T)+1} - 1. \end{aligned}$$